
Supporting Behavior-based Architectures on
Small Processors using

Guarded Commands
Edward C. Epp, Ph.D.

Intel Research
Email: edward.epp@intel.com

Abstract – Distributing robotic sensing and control
to remote units often simplifies design, increases
modularity, improves electromechanical characteristics,
and promotes reuse. Distributing intelligence to these
remote units is a challenge because of constrained
memory (a few kilobytes). This paper describes the Guard
Based Language (GBL) that is a C-like language using
Dijkstra’s guarded extensions. Guarded extensions
provide a declarative feel to the language making it
easier to map intelligence to code. The resulting compiled
programs fit into small memory footprints and have little
execution overhead. This paper begins with a brief
introduction to Dijkstra’s guards. This is followed by the
description of GBL. Examples are provided of GBL
programs and how they are translated to make them run
efficiently on small systems. The impact of testing and
modifying GBL programs is briefly addressed. Finally,
open questions surrounding GBL are examined.

1 Introduction

One of the many design tradeoffs one makes when
constructing an autonomous robot is its software
architecture. For example, on the software side one may
choose behavior control [1] or sense-plan-execute [2]. On
the hardware side one may choose a centralized control
processor or distributed control/sensing processors.

This paper assumes distributed control processors. We
will focus on distributed nodes that are memory-
constrained (a few kilobytes). For example, Rocky 8, a
JPL rover test-bed, uses Remote Engineering Units
(REUs) that implement subsets of the control/sensing
system design [3]. REUs simplify design, increase
modularity, reduce wire length, reduce wire count, reduce
thermal loss, reduce mass, reduce noise, are reusable, and
accommodate design changes [4].

In addition to distributing control and sensing, one
may also distribute intelligence. For example,
programming primitive behavior into a remote node
allows a node to respond quickly to threats or
opportunities without being delayed by a centralized
processor. This is not unlike nodes in the spinal cord that

allow us to respond quickly to pain. However, distributing
intelligence is a challenge. Because of memory
constraints, it is difficult to utilize programming
abstractions that aid in our effort to express reasoning [5].
It is difficult to forgo these abstractions because we know
that the shorter the distance from idea to code, the easier it
is to understand, test, and modify our ideas.

Traditional imperative languages, such as C, can
present a challenge for representing behavioral
architectures. For example, processes are often used to
encapsulate behaviors. However, the mapping is not clear
between a behavioral architecture and C procedures and
processes. In addition, given constrained memory,
processes may be difficult to support.

This paper documents an experiment with a language
based on C that contains guarded commands to more
naturally express behaviors with little memory or
processor overhead.

2 Guards

Dijkstra was interested in establishing a “formal
calculus” to derive correct programs [6]. He introduced
guarded commands because their nondeterministic nature
simplified program derivation. Dijkstra illustrated the
semantics of guards with the following example:

q1,q2,q3,q4 := Q1,Q2,Q3,Q4;
do q1 > q2 ∅ q1,q2 := q2,q1;

q2 > q3 ∅ q2,q3 := q3,q2;
q3 > q4 ∅ q3,q4 := q4,q3;

od.

This code fragment sorts 4 values such that q1
receives the smallest value, q2 the next highest, q3 the
next, and q4 the highest value. The first line is an
assignment statement with multiple variables on the left-
hand side and multiple expressions on the right-hand side
of the assignment operator; q1 gets the value Q1, q2 gets
the value Q2, and so forth. This notation is convenient
because it allows a variable swap with a single assignment
statement, i.e., q1,q2 := q2,q1. The iteration
construct is enclosed with the do ... od pair. Execution
remains within the loop as long as at least one of its

guards is true, for example q1 > q2. The order of guard
evaluation is nondeterministic. When all guards are false,
control leaves the loop. The is used to express
nondeterminism and thus separates guarded commands.

Since Dijkstra’s introduction of guards, several
languages have incorporated them. Two languages of
particular interest can be found in Hansen [7] and in
Ishikawa, Tokuda, and Mercer[8].

3 Guard Based Language (GBL)

The author worked with Keith Rule and Tim
Sauerwein of Tektronix to develop a Guard Based
Language (GBL.) C was a natural base because of its
heavy use for embedded systems at Tektronix and its
simplicity. GBL’s purpose was to create a framework on
which we could evaluate guard-based languages.

A subset of GBL syntax follows and illustrates the key
additions to C.

<program> ::= <declaration> {<declaration>}
<declaration> ::= <variable declaration> |

<function declaration> |
<guarded command>

<guarded command> ::= when (<guard>) <priority>
<guard body>

<guard> ::= <boolean expression>
<priority> ::= priority <integer constant>
<guard body> ::= <block>

Dijkstra’s example would be written as follows in
GBL:

void Init()
{
q1 = Q1;
q2 = Q2;
q3 = Q3;
q4 = Q4;

}

void Swap(int& x, int& y)
{
int temp = x;
x = y;
y = temp;

}

when (q1 > q2) priority 0
{
swap(q1,q2);

}

when (q2 > q3) priority 0
{
swap(q2, q3);

}

when (q3 > q4) priority 0
{
swap(q3,q4)

}

Obviously, the above example does not represent an
efficient means for sorting 4 values. Its utility is because
it is a simple example.

To understand how this program works, it is necessary
to begin with GBL’s run-time system. When a GBL

program starts up, the first thing that occurs is the
initialization of global variables. This is followed by a
call to the Init function if it exists. The Init function
is responsible for putting the embedded system into a
predefined start state. This may involve setting register
values, resetting peripherals, or taking initial
environmental readings. Thus, the Init function has
many of the characteristics of main in C. However, when
the Init function terminates, the program is not
terminated, as it would in C. Instead, the program enters
its main operation mode. Within this mode, the run-time
system continually poles each guard. When a true guard
is found, its body is executed. GBL forever executes
guard bodies whose guards are true. It does not halt when
all guards are true.

Dijkstra places no limit on the number of loops with
guarded commands. Each loop is stated explicitly. In
GBL there is only one implied loop, which includes
guarded commands. All guarded commands are
embedded within this implied loop. Explicate loops are
allowed, but they may not enclose guarded commands.
These restrictions are for simplicity of the compiler and
the code it generates.

Notice that GBL guards are evaluated
deterministically. A priority clause has been added to
allow the programmer control over the order in which
guards are evaluated. This determinism is used to allow a
given behavior to subsume another behavior.

4 Program Correctness

In a more traditional C approach to programming
behaviors, a process is assigned to each behavior, plus
additional processes are created to handle behavior
arbitration and motor control. See Listing 3. Processes
require significant memory and CPU resources and their
underlying runtime schedulers are surprisingly difficulty
to write correctly.

In addition, testing concurrent systems is problematic
because the programmer has to account for all possible
interleaving of concurrent execution. One of the problems
shared by many testing methodologies is the combinatoric
problem that arises in large systems. The sheer number of
unique test cases becomes difficult to manage. This
problem is particularly prevalent in concurrent systems.
For example, Taylor, Levine, and Kelly [9] describe how
techniques used in sequential programming are difficult to
apply to concurrent programs. The scheduler in
concurrent languages presents a key difficulty. A program
tested under identical input data may exhibit markedly
different behavior. Taylor, et.al. solved this problem by
ignoring the effect of the scheduler and confined their
testing to state transitions that have a great potential for
errors. They concentrate heavily on all-possible-

rendezvous criterion (using the Ada model for
concurrency). Limiting the number of task transitions
helps manage the number of test cases.

Guarded commands are an attractive alternative to
concurrency. Once execution enters a guard body, it may
not be interrupted. It is assumed that guard bodies are
short code fragments that evaluate quickly. This constraint
simplifies the GBL runtime. Disallowing interruptions
within guard bodies makes it much easier to reason about
and test the program.

Exceptions are made for certain hardware and
software interrupts. They may interrupt the execution of
guard bodies but restrictions are placed on interrupt
handlers to maintain ease of analysis. Although an
interrupt may occur in the middle of executing a guard or
guard body, its execution is not allowed to have any side
effects that influence the execution of a guard or its body.
For example, suppose the embedded system has an
interrupt driven timer. The timer may be implemented
with an interrupt that updates a counter. To simplify
interactions, the interrupt handler may not change the
time. For example,

int timerUpdateRequest = 0;
int currentTime = 0;

void timerInterrupthandler()
{
timerUpdateRequest = 1;

}

when (timerUpdateRequest) priority 0
{
currentTime++;
timerUpdateRequest = 0;

}

when (...) ...
{
...
if (currentTime < 10)
...
// location x
...
if (currentTime < 10)
...

}

In the code fragment above one does not have to
account for unexpected changes in the current time at
"location x." The interrupt handler is not allowed to
change the current time because it would affect the
execution of a guard body, therefore, the interrupt handler
changes the timerUpdateRequest flag. The
timerUpdateRequest flag is allowed only to appear by
itself within one guard.

5 Example GBL Programs

The author happened to have several 68HC11 TM

controlled robots. As a result, GBL was written to
generate code for the 68HC11. Testing began on small

systems. Each robot had 512 bytes of EEPROM with 256
bytes of RAM.

What follows is a GBL program fragment that
instructs the robot to seek dark. The robot has two light
sensitive “eyes” that direct the robot toward the shadows.
It also has a bumper that allows the robot to respond to
obstacles. The Init and movement functions have been
removed for simplicity.

// When right bumper hit, backup and turn left
when ((bumper & 0x80) == 0) priority 0
{
reverse();
wait(10);
left();
wait(5);

}

// When left bumper hit, backup and turn right
when ((bumper & 0x40) == 0) priority 0
{
reverse();
wait(10);
right();
wait(5);

}

// When right eye is darker than left, go right
when (rightEye < leftEye &&

leftEye – rightEye > 0x10) priority 2
{
right();

}

// When left eye is darker than right, go left.
when (leftEye < rightEye &&

rightEye - leftEye > 0x10) priority 2
{
left();

}

// At all other times go forward
when (1) priority 9
{
forward();

}

Listing 1 – Dark seeking program in GBL

The code in Listing 1 is easy to understand and when
compiled with all of its movement and timing routines,
requires less than 512 bytes.

Using Dijkstra's guarded commands the above
program would be organized as follows (much of the
detail is removed for brevity):

do right bumper hit ∅ backup and turn left;
left bumper hit ∅ backup and turn right;
leftEye > rightEye ∅ turn right;
leftEye < rightEye ∅ turn left;
not anything above ∅ go forward;

od.

The last guarded command assures that at least one
guard is true, so the loop will never exit.

An important feature of GBL is that it is easy to add
behaviors. For example, adding the rest (stop) behavior
when a robot finds a dark corner can be implemented by
inserting the following code into Listing 1.

// When a dark spot is found, stop.
when (rightEye < 0xA0 && leftEye < 0xA0)
{
stop();

}

However, caution is in order. It is trivial to create
programs in which guards starve others. For example, in
the traffic light snippet below, one of the guards will
always be true. Thus, any lower priority guards will never
trigger. One hopes static analysis may be of some
assistance in finding some of these problems.

when (east == green) priority 5
{
east = red;
north = green;

}
when (north == green) priority 5
{
north = red;
east = green;

}

6 Implementation

The GBL compiler translates a program, such as the
one in Listing 2, into an equivalent assembler program
that implements the finite state machine in Figure 1.

int option @ 0x1039; // 68HC11 option register
int adctl @ 0x1030 = 0x30; // set A/D control
int leftEye @ 0x1031; //ADR1 maps to bit 0 porte

void Init()
{
option |= 0x80; // turn A/D on

}

// Guard 1: When bumper is hit, back up & turn.
when ((bumper & 0x40) == 0) priority 0
{
reverse(); wait(10);
left(); wait(10);

}

// Guard 2: When a dark spot is found, stop.
when (rightEye < 0xA0 &&

leftEye < 0xA0) priority 1
{
stop();

}

// Guard 3: When the right eye is darker than
the left, go right.
when (rightEye < leftEye &&

leftEye - rightEye > 0x10) priority 2
{
right();

}

// Guard 4: When the left eye is darker than the
// right, go left.
when (leftEye < rightEye &&

rightEye - leftEye > 0x10) priority 2
{
left();

}

Listing 2 – Example program

initialize globals
i.e., adctl

evaluate Init
i.e., set option

guard 2
guard body
2stop

start

guard 4
guard body
4turn
left

false

false

true

true

guard 1
guard body
1reverse
left

false

true

guard 3
guard body
3turn
right

false

true

Figure 1 – Finite state machine for Listing 2

It is easy to translate the above finite state machine
into a small footprint. Guard priority is achieved by
ordering the guards. The higher their priority, the nearer
the top of the chain they appear. (Priority 0 is the highest
followed by increasingly positive integers.)

Because there is not enough space to support a real-
time operating system, the GBL generated code does not
rely on any operating system calls. The GBL compiler
generates code for the guard scheduler and all IO drivers.

7 Example using Interactive C

For comparison, Listing 3 re-implements Listing 1
using processes. Jones and Flynn[10] provide the
inspiration for this approach.

The program in Listing 3 is complex because the code
that implements each behavior is distributed. Flags are
used to tie the behaviors together. Code distribution also
makes the program more difficult to modify. Adding the
“rest” behavior requires modifications to five code
locations. See Listing 4. The author found himself making
multiple errors of omission when he added behaviors.

/* set if a particular behavior is triggered */
int cruiseOutputFlag = 0;
int darkRightOutputFlag = 0;
int darkLeftOutputFlag = 0;
int bumpRightOutputFlag = 0;
int bumpLeftOutputFlag = 0;

/* possible motor commands */
int CRUISE = 10;
int DARKLEFT = 12;
int DARKRIGHT = 13;
int BUMPLEFT = 14;
int BUMPRIGHT = 15;

int motorInput = 10;

/**** trigger cruise forward behavior *********/
/* not really needed */

void cruise()
{
while (1) {
cruiseOutputFlag = 1;
defer();

}
}

/**** trigger dark to the right behavior ******/

void darkRight()
{
while (1) {
if ((analog(RIGHTEYE) > analog(LEFTEYE)) &&

((analog(RIGHTEYE) –
analog(LEFTEYE)) > THRESHHOLD)) {

darkRightOutputFlag = 1;
}
else
darkRightOutputFlag = 0;

defer();
}

}

/**** trigger dark to the left behavior *******/

void darkLeft()
{
… similar to darkRight

}

/**** trigger bump right behavior *************/

void bumpRight()
{
while (1) {
if (digital(RIGHTBUMPER))
bumpRightOutputFlag = 1;

else
bumpRightOutputFlag = 0;

defer();
}

}

/**** trigger bump left behavior *************/

void bumpLeft()
{
… similar to bumpRight

}

/** arbitrate - select highest-level behavior */

void arbitrate()
{
while(1) {
if (cruiseOutputFlag == 1)
motorInput = CRUISE;

if (darkRightOutputFlag == 1)
motorInput = DARKRIGHT;

if (darkLeftOutputFlag == 1)
motorInput = DARKLEFT;

if (bumpRightOutputFlag == 1)
motorInput = BUMPRIGHT;

if (bumpLeftOutputFlag == 1)
motorInput = BUMPLEFT;

sleep(0.01);
defer();

}
}

/**** vroom - realize the behavior ***********/

void vroom()
{
while(1) {
if (motorInput == CRUISE) {
motor(RIGHT,50);
motor(LEFT ,50);

}
if (motorInput == BUMPRIGHT) {
motor(RIGHT,-25);
motor(LEFT ,-25);
sleep(1.0);
motor(RIGHT,100);
motor(LEFT ,-100);
sleep(0.5);

}
if (motorInput == BUMPLEFT) {
motor(RIGHT,-25);
motor(LEFT ,-25);
sleep(1.0);
motor(RIGHT,-100);
motor(LEFT ,100);
sleep(0.5);

}
if (motorInput == DARKRIGHT) {
motor(RIGHT,0);
motor(LEFT ,100);

}
if (motorInput == DARKLEFT) {
motor(RIGHT,100);
motor(LEFT ,0);

}
defer();

}
}

/**** main - start up the processes **********/

void main()
{
start_process(cruise());
start_process(darkRight());
start_process(darkLeft());
start_process(bumpRight());
start_process(bumpLeft());
start_process(arbitrate());
start_process(vroom());

}

Listing 3 – Dark seeking program using processes

8 Conclusion

Our experience with these robots has shown that
guarded commands have great promise for writing
effective embedded system controllers for small systems.
We found the code easy to write, easy to reason about,
and easy to evaluate.

Our current experience with GBL is still limited.
There are many questions we would like to answer.

The following globals must be added to the
beginning of the program.

int restOutputFlag = 0;
int REST = 11;

The following task must be added.

void rest()
{
int threshHold = knob();
while (1) {
if ((analog(RIGHTEYE) > threshHold) &&

(analog(LEFTEYE) > threshHold)) {
restOutputFlag = 1;
}

else
restOutputFlag = 0;

defer();
}

}

The following must be added to the arbitrate
process.

if (restOutputFlag == 1)
motorInput = REST;

The following must be added to the process motor
process (vroom.)

if (motorInput == REST) {
motor(RIGHT,0);
motor(LEFT ,0);

}

The following must be added to main.

start_process(rest());

Listing 4 – Adding “rest” behavior to Listing 3

• It is not clear how guard based programs will scale.
Current experience is based on small programs.
Guards have some similarities to rules in rule base
systems. Maybe GBL will suffer from some of the
same problems that occur in rule-based systems as the
number of rules becomes large[11].

• It is not clear what kinds of issues GBL programs
may experience around deadlock, race conditions,
and process starvation.

• Embedded systems have tight timing constraints. In
hard real time systems the program must meet its
timing constraints or it fails. How well do guards
work in such systems? Are there extensions we can
make to the language to facilitate hard real time? Can
we us static analysis of the generated code to assure
timing constraints are met in small programs?

• Doing proof of correctness analysis on programs can
be beneficial in applications where failure is
expensive (e.g., space missions). It would be
interesting to determine which GBL language features
are conducive to analysis. For example, what is the
impact of the priority clause? It increases
determinism but does it also make proof of
correctness more difficult?

9 Acknowledgments

I want to acknowledge the inspiration Tim Sauerwein,
David Maguire, Keith Rule, and Wendell Damm of
Tektronix and undergraduate researchers Isaac Oram and
Kevin Jackson-Mead of The University of Portland. This
effort was supported in part by a grant from National
Science Foundation (NSF RUI CCR-9407110).

10 References

1 R. A. Brooks. A Robust Layered Control System for a
Mobile Robot. IEEE Journal of Robotics and
Automation. RA-2, (April 1986) pp.14-23.

2 R. Simmons. Structured Control for Autonomous
Robots. IEEE Transactions on Robotics and
Automation, 10(1): 34-43, 1994.

3 R. Volpe, I.A.D. Nesnas, T. Estlin, D. Mutz, R. Petras,
H. Das. CLARAty: Coupled Layer Architecture for
Robot Autonomy. JPL Technical Report D-19975,
Dec 2000.

4 D. Hykes, E. H. kopf, G. S. Bolotin, J. Waters, K. A.
Mehaffey, M Bell, S. M. Park. Packages of Circuitry
for Controlling a Robotic Vehicle. JPL New
Technology Report NPO-20763, June 2001.

5 D. Brugali and M. E. Fayad. Distributed Computing in
Robotics and Automation. IEEE Transactions on
Robotics and Automation. 18(4): 409-420, August
2002.

6 E. W. Dijkstra. Guarded Commands, Nondeterminacy
and Formal Derivation of Programs. Communications
of the ACM. 18(8): 453-457, August 1975.

7 P. B. Hansen. Distributed Processes: A Concurrent
Programming Concept. Communications of the ACM.
21(11): 934-941, November 1978.

8 U. Ishikawa, H. Tokuda, and C. W. Mercer. Object-
Oriented Real-Time Design: Constructs for Timing
Constraints. ECOOP/OOPSLA ‘90 Proceedings. 289-
298. October 1990.

9 R. N. Taylor, D. L. Levine, and C. D. Kelly. Structural
Testing of Concurrent Programs. IEEE Transactions
on Software Engineering. 19(3): 206-215, March
1992.

10 J. L. Jones and A. M. Flynn. Mobile Robots:
Inspiration to Implementation, Chapter 9: Robot
Programming. A. K. Peters, 1993.

11 M. D. Rychener. Production Systems as a
Programming Language for Artificial Intelligence
Applications. Dissertation submitted to the
Department of Computer Science at Carnegie-Mellon
University. December 1976.

